首页> 外文OA文献 >Self-Supervised Video Representation Learning With Odd-One-Out Networks
【2h】

Self-Supervised Video Representation Learning With Odd-One-Out Networks

机译:具有奇数单出网络的自我监督视频表示学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-one-out learning. In this task, the machine is asked to identify the unrelated or odd element from a set of otherwise related elements. We apply this technique to self-supervised video representation learning where we sample subsequences from videos and ask the network to learn to predict the odd video subsequence. The odd video subsequence is sampled such that it has wrong temporal order of frames while the even ones have the correct temporal order. Therefore, to generate a odd-one-out question no manual annotation is required. Our learning machine is implemented as multi-stream convolutional neural network, which is learned end-to-end. Using odd-one-out networks, we learn temporal representations for videos that generalizes to other related tasks such as action recognition. On action classification, our method obtains 60.3% on the UCF101 dataset using only UCF101 data for training which is approximately 10% better than current state-of-the-art self-supervised learning methods. Similarly, on HMDB51 dataset we outperform self-supervised state-of-the art methods by 12.7% on action classification task.
机译:我们提出了一种新的自我监督的CNN预训练技术,该技术基于一种新颖的辅助任务,称为奇一单学习。在此任务中,要求机器从一组其他相关元素中识别出不相关或奇数元素。我们将此技术应用于自监督视频表示学习,其中我们从视频中采样子序列,并要求网络学习预测奇数视频子序列。对奇数视频子序列进行采样,以使其具有错误的帧时间顺序,而偶数子帧具有正确的时间顺序。因此,要生成一个单数的问题,不需要手动注释。我们的学习机被实现为端到端学习的多流卷积神经网络。使用奇一单网络,我们学习了视频的时间表示,这些时间表示可以推广到其他相关任务,例如动作识别。在动作分类上,我们的方法仅使用用于训练的UCF101数据就可以在UCF101数据集上获得60.3%的数据,这比当前最新的自我监督学习方法好大约10%。同样,在HMDB51数据集上,我们在动作分类任务上的表现优于自我监督的最新方法,高出12.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号